技術(shù)文章
TECHNICAL ARTICLES以硅(Si)、砷化鎵(GaAs)為代表的代和第二代半導(dǎo)體材料的高速發(fā)展,推動了微電子、光電子技術(shù)的迅猛發(fā)展。然而受材料性能所限,這些半導(dǎo)體材料制成的器件大都只能在200℃以下的環(huán)境中工作,不能滿足現(xiàn)代電子技術(shù)對高溫、高頻、高壓以及抗輻射器件的要求。作為第三代寬帶隙半導(dǎo)體材料的代表,碳化硅(SiC)單晶材料具有禁帶寬度大、熱導(dǎo)率高、電子飽和遷移速率高和擊穿電場高等性質(zhì)。SiC器件在高溫、高壓、高頻、大功率電子器件領(lǐng)域和航天、軍工、核能等環(huán)境應(yīng)用領(lǐng)域有著不可替代的優(yōu)勢,彌補(bǔ)了傳統(tǒng)半導(dǎo)體材料器件在實(shí)際應(yīng)用中的缺陷,正逐漸成為功率半導(dǎo)體的主流。
SiC晶體結(jié)構(gòu)具有同質(zhì)多型的特點(diǎn),其基本結(jié)構(gòu)是Si-C四面體結(jié)構(gòu),它是由四個Si原子形成的四面體包圍一個碳原子組成,按相同的方式一個Si原子也被四個碳原子的四面體包圍,屬于密堆積結(jié)構(gòu)。SiC多型晶體的晶格常數(shù)a可以看作常數(shù),而晶格常數(shù)c不同,并由此構(gòu)成了數(shù)目很多的SiC同質(zhì)多型體。若把這些多型體看作是由六方密堆積的Si層組成,緊靠著Si原子有一層碳原子存在,在密排面上Si-C雙原子層有三種不同的堆垛位置,稱為A、B和C。由于Si-C雙原子層的堆垛順序不同,就會形成不同結(jié)構(gòu)的SiC晶體。ABC…堆積形成3C-SiC結(jié)構(gòu),ABAC…堆積形成4H-SiC結(jié)構(gòu),ABCACB…堆積形成6H-SiC結(jié)構(gòu)。這些晶型屬于三種基本的結(jié)晶學(xué)類型:立方(C)、六方(H)和菱形(R),目前已被證實(shí)的SiC多形體已超過200種,其中較為常見的有3C、4H、6H和15R等。
這些多型的SiC晶體雖然具有相同的化學(xué)成分,但是它們的物理性質(zhì),尤其是帶隙、載流子遷移率、擊穿電壓等半導(dǎo)體特性有很大的差別。目前,4H-SiC應(yīng)用廣,廣泛應(yīng)用于電力電子器件和微波功率器件。
通常半導(dǎo)體材料的晶錠生長是采用元素半導(dǎo)體或化合物半導(dǎo)體熔融液中的直拉單晶法或籽晶凝固法。然而由于熱動力學(xué)原因,固態(tài)SiC只有在壓強(qiáng)超過1×105atm、溫度超過3200℃時才會熔化。目前,晶體生長實(shí)驗(yàn)室及工廠所擁有的技術(shù)手段還無法達(dá)到這樣的要求。迄今為止,物理氣相傳輸法(PVT)是生長大尺寸、高質(zhì)量SiC單晶的方法,也稱為改良的Lely法或籽晶升華法,這種方法占據(jù)了SiC圓晶供應(yīng)量的90%以上。此外,高溫化學(xué)氣相沉積法(HTCVD)也可以用來制備SiC單晶。
物理氣相傳輸法
PVT法生長SiC單晶一般采用感應(yīng)加熱方式,在真空下或惰性氣體氣氛保護(hù)的石墨坩堝中,以高純SiC粉為原料,在一定的溫度和壓力下,固態(tài)SiC粉在高溫下發(fā)生分解升華,生成具有一定結(jié)構(gòu)形態(tài)的氣相組分SimCn,由于石墨坩堝反應(yīng)腔軸向存在著溫度梯度,氣相組分SimCn從溫度相對較高的生長原料區(qū)向溫度相對較低的生長界面(晶體/氣相界面)運(yùn)動,并在SiC籽晶上沉積與結(jié)晶。如果這個過程持續(xù)一定時間,生長界面將穩(wěn)定地向原料區(qū)推移,終生成SiC晶體。
PVT法采用SiC籽晶控制所生長晶體的構(gòu)型,克服了Lely 法自發(fā)成核生長的缺點(diǎn),可得到單一構(gòu)型的SiC 單晶,生長出較大尺寸的SiC 單晶,生長壓力在一個大氣壓(1atm)以內(nèi),生長溫度在2000℃-2500℃之間,遠(yuǎn)低于熔體生長所需的壓力和溫度。PVT法生長SiC晶體需要建立一個合適的溫場,從而確保從高溫到低溫形成穩(wěn)定的氣相SiC輸運(yùn)流,并確保氣相SiC能夠在籽晶上成核生長。然而,在晶體生長過程中涉及到多個生長參數(shù)的動態(tài)控制問題,而這些工藝參數(shù)之間又是相互制約的,因此該方法生長SiC單晶的過程難于控制。此外,生長過程中SiC粉料不斷碳化也會對氣相組成以及生長過飽和度造成一定的影響。諸多因素使得目前上只有少數(shù)幾個機(jī)構(gòu)掌握了PVT法生長SiC單晶的關(guān)鍵技術(shù)。
高溫化學(xué)氣相沉積法
HTCVD法制備SiC晶體一般利用感應(yīng)射頻或石墨托盤電阻加熱使反應(yīng)室保持所需要的反應(yīng)溫度,反應(yīng)氣體SiH4和C2H4由H2或He載帶通入反應(yīng)器中,在高溫下發(fā)生分解生成SiC并附著在襯底材料表面,SiC晶體沿著材料表面不斷生長,反應(yīng)中產(chǎn)生的殘余氣體由反應(yīng)器上的排氣孔排除。通過控制反應(yīng)器容積的大小、反應(yīng)溫度、壓力和氣體的組分等,得到準(zhǔn)確的工藝條件。
該方法已經(jīng)被用于在晶體生長工藝中獲得高質(zhì)量外延材料,瑞典的Okmetic公司于20世紀(jì)90年代開始研究此技術(shù),并且在歐洲申請了該技術(shù)。這種方法可以生長高純度、大尺寸的SiC晶體,并有效的減少晶體中的缺陷。但如何阻止SiC在生長系統(tǒng)中的沉積也是該方法所面臨的主要問題。
提高SiC晶體質(zhì)量,就意味著必須降低晶體中的缺陷, PVT法生長SiC單晶需要控制的工藝參數(shù)較多,并且這些參數(shù)在生長過程中不斷發(fā)生變化,所以對晶體中的缺陷控制比較困難。SiC單晶的缺陷主要包括微管、多型、位錯、層錯和小角晶界等。由于SiC晶體中一種缺陷的存在往往會誘發(fā)其它缺陷產(chǎn)生,因此,對這些缺陷進(jìn)行研究并且在晶體生長過程中對其進(jìn)行有效的控制,對于提高SiC晶體質(zhì)量是非常重要的。
微管
微管缺陷嚴(yán)重阻礙了多種SiC器件的商業(yè)化,被稱為SiC器件的“殺手型”缺陷。大多數(shù)關(guān)于微管缺陷形成機(jī)制的討論都是基于微管與大伯格斯矢量超螺形位錯相結(jié)合的Frank理論。生長過程中,沿超螺旋位錯核心方向的高應(yīng)變能密度會導(dǎo)致該處優(yōu)先升華,因此微管缺陷具有空心的特征。微管缺陷的產(chǎn)生往往會伴隨其它過程的出現(xiàn),如微管道分解、遷移、轉(zhuǎn)變和重新結(jié)合等,并且隨著晶體直徑的增加,控制所有生長參數(shù)達(dá)到所需的精度越來越困難,微管缺陷的密度也會隨之增加。
盡管微管的形成具有不同的理論和技術(shù)方面的原因,通過對生長工藝的改進(jìn),過去幾年里SiC單晶的微管密度仍然在持續(xù)下降。2000年,Müller等介紹了Cree公司制備出的直徑為25mm的無微管缺陷4H-SiC晶片,直徑為50mm的4H-SiC晶片的微管密度僅為1.1cm-1,這種質(zhì)量的材料已經(jīng)被證明非常適合制造大面積功率器件。2009年Gupta等發(fā)表文章稱,美國Ⅱ-Ⅵ公司制備出直徑為106.4mm的半絕緣6H-SiC晶錠,其晶片微管密度在2~8cm-2范圍內(nèi)。2009年Schmitt等介紹了德國SiCrystal公司在提高3inch 4H-SiC晶片結(jié)晶質(zhì)量上取得的進(jìn)展,其晶片微管密度小于0.1cm-2。2009年,Leonard等報(bào)道了Cree公司出品的經(jīng)KOH腐蝕的無微管100mm 4H-SiC晶片。2009年,Gao等人采用升華法在面為籽晶的6H-SiC單晶中得到了無微管的高質(zhì)量單晶區(qū)。目前山東天岳生產(chǎn)的4英寸4H-SiC晶片,其微管密度為0.3cm-2。近來,隨著技術(shù)的進(jìn)步,減少甚至*消除這類缺陷已成為可能。
多型
確保單一晶型對于SiC單晶襯底是非常重要的,晶型的轉(zhuǎn)變不但會嚴(yán)重破壞SiC晶體的結(jié)晶完整性、改變材料的電學(xué)特性,還為微管缺陷提供了成核點(diǎn),并延伸至晶錠的其余部分。不同SiC晶型之間的本質(zhì)區(qū)別就在于<0001>晶向上Si-C雙原子層的堆垛順序發(fā)生了改變。當(dāng)堆垛次序保持不變時,SiC晶體的晶型就不會改變。當(dāng)晶體生長是通過SiC生長表面上臺階的繁殖進(jìn)行時,相對容易保持單一類型。然而,SiC生長過程中有一個臺階聚集的傾向,這就會形成大的臺面,臺階邊緣數(shù)量的減少,會使得到達(dá)的Si和C原子可能無法擴(kuò)散到臺階邊緣,而在臺面中心形成新的晶核,這些新晶核可能具有與底層材料不同的雙層堆垛次序,從而導(dǎo)致晶型的改變。
在晶體生長過程中,各種晶型的SiC晶體不存在固定的形成溫度范圍。溫度、雜質(zhì)、壓力、過飽和度、籽晶取向和極性以及生長區(qū)Si/C原子比,都會影響到SiC多型結(jié)構(gòu)的形成。由于多型共生會對晶體的結(jié)晶質(zhì)量產(chǎn)生致命的影響,從某種意義上說,如何抑制和消除多型共生缺陷,是PVT法SiC晶體生長研究的一個重要任務(wù)。
小角晶界
在晶體生長過程中,由于氣相組分過飽和使晶坯邊緣進(jìn)行擇優(yōu)生長,從而產(chǎn)生了偏離籽晶方向的晶格失配區(qū)域,在晶格失配區(qū)域,不同晶向的晶粒之間形成晶界。晶界通常由擴(kuò)展邊緣和螺旋位錯構(gòu)成,并貫穿整個晶錠,這對器件結(jié)構(gòu)是致命的??拷w邊緣的小角晶界是大直徑晶體在非優(yōu)化工藝條件下生長時形成的,它是SiC材料中具有輕度位錯的不同區(qū)域之間的交界,小角晶界作為應(yīng)力中心,增加了外延生長過程中晶片在缺陷處破裂的可能性,因此應(yīng)盡量減少或消除晶體中小角晶界的密度。通過觀察同一個晶棒不同生長階段晶片的KOH腐蝕形貌,發(fā)現(xiàn)沿著<1-100>方向的小角晶界是在生長過程中刃位錯的滑移引入的,而不是在生長初期形成的。生長室內(nèi)的徑向溫度梯度對小角晶界的結(jié)構(gòu)和形貌具有一定的影響,小的徑向溫度梯度可以減少小角晶界的位錯形成。
應(yīng)力
SiC晶體中的應(yīng)力通常是指在沒有外力或外力矩的作用下在晶體內(nèi)部依然存在并保持自身平衡的力。SiC晶體中的應(yīng)力來源有很多,主要有兩種,一種是來源于SiC晶體匯總各種缺陷,如前所述的缺陷與周圍的正常格點(diǎn)之間產(chǎn)生畸變,導(dǎo)致在缺陷的周圍出現(xiàn)一定的應(yīng)力場。如微管道缺陷就會在其周圍形成一定的應(yīng)力場。另一種是由于SiC晶體的非均勻性生長造成的,PVT法生長SiC晶體過程中溫度梯度是晶體生長的驅(qū)動力,在坩堝內(nèi)同時存在著軸向和徑向的溫度梯度。溫度梯度的存在導(dǎo)致SiC表面生長速率的不一致,從而使大部分生長出的SiC晶錠表面呈現(xiàn)凸起或凹陷的現(xiàn)象。此外,SiC晶體中的熱應(yīng)力還受晶體形狀、籽晶與石墨蓋的粘接方式、晶體與坩堝壁的接觸等有關(guān),這些因素會導(dǎo)致在生長出的SiC晶體中不可避免的存在著軸向和徑向的應(yīng)力場。
與半導(dǎo)體Si單晶材料類似,SiC單晶材料的發(fā)展方向也是向著單晶直徑逐漸擴(kuò)大、晶體質(zhì)量逐漸提高、單位面積成本逐漸降低的趨勢發(fā)展。目前SiC的主要應(yīng)用領(lǐng)域有LED照明、雷達(dá)、太陽能逆變,未來SiC器件將在智能電網(wǎng)、電動機(jī)車、通訊等領(lǐng)域擴(kuò)展其用途,市場前景不可估量。隨著SiC晶體生產(chǎn)成本的降低,SiC材料正逐步取代Si材料成為功率半導(dǎo)體材料的主流,打破Si芯片由于材料本身性能而產(chǎn)生的瓶頸,SiC材料將會給電子產(chǎn)業(yè)帶來革命性的變革。
SiC晶體高溫退火爐 | |
皓越科技 電子半導(dǎo)體相關(guān)裝備 1、硅晶體及第三代半導(dǎo)體晶體生長設(shè)備 用于半導(dǎo)體Si晶體、SiC晶體、GaN晶體、AlN晶體和LED基體藍(lán)寶石晶體生長,以及其在基體材料上進(jìn)行外延生長。 2、晶體熱處理和快速退火設(shè)備 用于半導(dǎo)體行業(yè)晶體生產(chǎn)過程熱處理工藝,芯片生產(chǎn)氧化及擴(kuò)散工藝,離子注入后快速退火工藝。 3、設(shè)備及周邊產(chǎn)品的售后服務(wù) 提供設(shè)備的安裝調(diào)試、維修保養(yǎng),以及周邊零部件的*工作。 | |
裝備特點(diǎn) 工藝:用于SiC、GaN等的高溫活化退火等工藝 |
上海皓越真空設(shè)備有限公司,一家集研發(fā)、生產(chǎn)、銷售電爐為一體的高新技術(shù)企業(yè)。公司一直專注于半導(dǎo)體材料、碳材料、先進(jìn)陶瓷與復(fù)合材料和鋰電材料四大行業(yè),擁有豐富的行業(yè)經(jīng)驗(yàn)和技術(shù),竭誠服務(wù)于客戶,提供一體化產(chǎn)業(yè)解決方案。
Copyright © 2024上海皓越真空設(shè)備有限公司 All Rights Reserved 備案號:滬ICP備2022033023號-2
技術(shù)支持:化工儀器網(wǎng) 管理登錄 sitemap.xml 總訪問量:354727